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This study analyzes the effects of renewable energy systems on macroeconomic and environmental results 

for seven countries from 2000-2023. Three new indices were formed to show not only the quantitative but 

the structural and qualitative parts of renewable energy systems: the Green Energy Growth Rate, Energy 

Diversity Index, and Risk Adjusted Green Score. These respectively show the growth rate of production, the 

sources of energy diversity, and the volatility-adjusted stability of renewable energy production. Renewable 

Energy Indicators of Economic Growth: A Novel Explainable Framework. We try to answer whether or not a 

green energy index accelerates economic development while trying to answer the question of whether or 

not the green score diminishes environmental pollution. Using the machine learning-based XGBoost 

regression model and SHapley Additive exPlanations methodology- powerful tools that offer relatively new 

approaches to the twin problems of renewable energy indicators toward economic growth, and 

environmental pollution- the paper quantifies both numerically and casually the contributions of renewable 

energy indicators to economic growth, FDI, gross savings, public finances, and particulate matter-related 

environmental damage. Country-specific response profiles to these energy indicators were grouped 

through K-Means clustering analysis. At a more intuitive level of understanding results, one notes that the 

Risk Adjusted Green Score (RAGS) has the greatest power in terms of influencing the reduction of 

environmental damage. Closest to the classical theoretical relation with the dependent variable is found to 

be the Green Energy Growth Rate (GEGR). The Energy Diversity Index (EDI) proves support and support-

based balance, particularly within public finance indicators. Countries are clustered into three structural 

groups based on the 18-dimensional SHAP response profiles. This can offer much intuition into the 

heterogeneity of energy policy impacts and sustainability outcomes. The study has revealed the inadequacy 

of policies towards renewable energies, which are directed merely to the expansion of capacity in the context 

of the goals of sustainable development. It argues for the development of a policy design framework that 

incites dimensions of diversity and stability in a holistic manner that could more adequately undertake the 

requirements of both economic development and the protection of the environment.
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1.  INTRODUCTION 

The energy transition is not a side issue in the environmental or engineering debate; it forms the 
central vector of future development over global development and economic resilience and 
ecological sustainability. As countries race to reconfigure their energy systems under mounting 
pressure regarding climate change and fossil fuel uncertainty, renewable energy has come to not 
only offer a technically feasible solution but to represent a new way of grappling with the questions 
of how the economy should grow and the direction in which society should develop. Throughout this 
change, most of the current talk has favored quantitative measures-established capacity, price per 
watt, or CO₂ cuts-as signs of development. These signs are vital for comparing progress in infrastruc-
ture and checking carbon impact, but they normally cover the inside forces that control the efficiency 
and strength of renewable energy systems. For indeed, the less aspect of what can make a renewable 
energy system successful is not just the big in its size but how it is set up—how it can change, fit in, 
and support both money and green goals over time. A growing body of research reveals that there is 
a very complex relationship between renewable energy and the paths of development at all levels, 
including the national trajectory. Over a lower scale, renewable energy use positively correlates with 
G.D.P. growth, especially in countries when fossil fuel dependencies are reduced and the green 
sectors are nurtured through targeted investments and innovation ecosystems. Such factors have 
lately come up in the E.U. Countries under the strategic linkage of renewable uptake with economic 
dynamism and financial development under the Green Deal initiative. In such areas, the shift from 
fossil o renewable is not only a carbon calculus but an economic recalibration which diversifies 
energy risk and spurs green employment and macroeconomic stability. The environmental dividends 
of renewable energy are concomitant. This is seen from the fact that solar, wind, and hydro sources 
have for long proved significantly effective in reducing the emission of greenhouse gases. Thereby, it 
goes without saying that local and international sustainability goals are met (Ren et al., 2020; 
Sharma et al., 2021; Bano et al., 2021). Such countries have less energy price volatility and lower 
healthcare expenditure due to pollution, and their overall international standing is enhanced 
because trade access, foreign direct investment, and geopolitical relations are now strongly 
influenced by environmental indicators (Borzuei et al., 2022; Simionescu et al., 2020). The benefits of 
renewable energy are not exactly evenly distributed, as was implicitly assumed by the optimistic 
formulation above. Rather, their realization waxes deep on existing infrastructural capacity within a 
given policy coherence and, indeed, the political economy of energy governance. While high-income 
nations may have the capacity to use capital-intensive renewables as a means of enhancing their 
global competitiveness, the low-income ones often find it difficult to mobilize the required 
investment for such a long gestation period with so many transitional risks to be integrated into 
their often-fragmented grids (Omri & Nguyen, 2014; Candra et al., 2023; Sudaryanto, 2019). This 
asymmetry in renewable energy adoption underscores the importance of designing policies that are 
not only ambitious but also structurally adaptive to varying national contexts. Empirical research 
reveals that the same renewable energy investment can yield divergent macroeconomic outcomes 
depending on a country’s institutional readiness, industrial structure, and socio-political cohesion 
(Yusoff et al., 2023; Işık et al., 2017). In nations with well-established energy governance and robust 
grid infrastructure, renewables tend to amplify economic resilience. Conversely, in contexts where 
governance is fragmented or energy systems are centralized and brittle, the same transition may 
exacerbate inequalities or create new forms of energy insecurity (Candra et al., 2023; Saparulu et al., 
2024). The issue is not only one of scale, but of system architecture. A renewable energy system’s 
internal configuration-its growth trajectory, diversity of sources, and volatility-adjusted stability-
forms a critical triad that determines its real-world efficacy. Simply expanding capacity without 
regard to source balance or operational stability may lead to energy surpluses without utility, fiscal 
burdens without returns, or emissions reductions without social legitimacy. What is needed is a 
framework that treats renewable energy systems as complex, adaptive infrastructures whose 
qualitative dimensions-such as equity, transparency, and decentralization-are just as important as 
megawatt totals (Chen & Yang, 2021; Dobravec et al., 2021; Razmjoo et al., 2021). Indeed, Khan and 
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Gunvant (2023) argue that policy capacity must transcend mere budget allocation or technical 
expertise; it must include institutional reflexivity, deliberative governance, and mechanisms for 
inclusive participation. Such elements are not ancillary but fundamental to the long-term viability of 
sustainable energy systems. Without these qualitative underpinnings, quantitative expansion may 
stall, misfire, or fail to achieve its intended developmental outcomes. This view is echoed in Šikšnelytė-
Butkienė et al. (2019), who call for a multidimensional assessment of sustainability that includes 
social acceptance, ecological integrity, and policy effectiveness. Relying solely on economic efficiency 
or carbon reduction as performance metrics risks occluding the very societal processes that make 
energy transitions politically feasible and environmentally coherent. This is not just a theoretical 
concern; it has tangible implications for policy design, especially when deploying large-scale infra-
structure in communities with complex social fabrics or contested land use. System resilience, then, 
cannot be divorced from system legitimacy. And legitimacy, in turn, is co-produced through partici-
patory structures, localized planning, and institutional trust. The operational success of a wind farm 
or solar array hinges not only on technical specifications but also on how well it has been socially in-
tegrated—how it reflects the needs, values, and expectations of the communities it is meant to serve.  

This paradigm—that renewable energy systems must be understood not only in terms of their 
physical output but also through their structural and relational characteristics—forms the concep-
tual core of this study. We posit that the quality of renewable energy systems, defined by the inter-
play of growth rate, source diversity, and volatility-adjusted stability, constitutes a more accurate 
predictor of national outcomes than capacity alone. This triadic quality structure does not merely 
complement traditional indicators; it challenges the epistemic foundations upon which current 
policy models rest. To interrogate this hypothesis, our approach bridges theory with empirically 
grounded techniques. Drawing upon machine learning, explainable AI, and statistical clustering, we 
construct and analyze three theory-driven indicators: Green Energy Growth Rate (GEGR), which 
quantifies the pace at which renewable energy expands; Energy Diversity Index (EDI), adapted from 
Shannon entropy, which captures the balance and variety of energy sources; and Risk Adjusted 
Green Score (RAGS), modeled on Sharpe-like ratios, which integrates growth and volatility into a 
single stability-adjusted metric. These indicators allow us to go beyond mere correlation, offering an 
interpretative lens through which to understand how structure influences function in national 
energy systems. These energy quality indicators are then linked to six national outcomes—five 
macroeconomic (GDP growth, FDI inflows, gross savings, public revenue, and government 
expenditure) and one environmental (particulate matter damage)—through XGBoost regression. 
Rather than treating these models as opaque black boxes, we apply SHAP (SHapley Additive 
exPlanations) values to elucidate the marginal contributions of each indicator to each outcome 
variable, offering a transparent, localized, and comparative understanding of energy–economy–
environment interactions. But this study does not stop at prediction. The second stage introduces a 
clustering layer that groups countries based on the structural patterns revealed by their SHAP 
vectors. Each country is characterized by an 18-dimensional SHAP profile—three indicators 
multiplied across six outcomes—reflecting how that nation’s macroeconomic and environmental 
performance responds to different energy system qualities. These profiles are then grouped using 
unsupervised KMeans clustering to reveal latent typologies of energy behavior. Crucially, these 
clusters are not aligned along traditional lines such as geography, income level, or emissions output. 
Instead, they reflect a novel taxonomy of systemic behavior: how nations respond, at a structural 
level, to the qualitative properties of renewable energy. Countries that appear dissimilar on the 
surface may share deep commonalities in how their economies and ecosystems react to specific 
energy configurations, while others with shared characteristics—such as GDP per capita—may 
diverge sharply in their energy sensitivity profiles. This insight carries profound implications. It 
disrupts the practice of policy transplantation—where strategies successful in one country are 
replicated wholesale in another—by insisting on a more nuanced structural diagnosis. It also 
reframes global energy diplomacy, suggesting that cooperation should be built not on static 
attributes, but on shared patterns of responsiveness. This structural perspective opens the door to a 
more intelligent and equitable approach to energy policy—one that treats similarity not as a matter 
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of surface attributes but of internal behavior. Countries that cluster together based on their SHAP-
derived energy response profiles can become peers in policy experimentation, knowledge exchange, 
and coordinated investment strategies. This form of alignment, grounded in how nations function 
rather than how they appear, offers a promising alternative to both geographic regionalism and 
income-group categorization. Moreover, the integration of SHAP into this analytical architecture 
addresses a critical tension in sustainability research: the trade-off between model performance and 
interpretability. Traditional econometric models, while statistically rigorous, are often too linear and 
too restrictive to capture the conditional, nonlinear interactions embedded in complex systems. On 
the other hand, machine learning models, while powerful in their predictive capacity, are frequently 
criticized for their opacity—the so-called “black box” problem. By employing SHAP, we sidestep this 
dichotomy. We retain the high-resolution pattern recognition of advanced algorithms while gaining 
access to the marginal logic of variable influence. This makes it possible not only to know what the 
system is doing, but to understand why it is doing it—knowledge that is indispensable for 
policymaking, stakeholder communication, and democratic accountability. What emerges from this 
dual-layered methodology is not just a predictive tool but an interpretive framework. It is a way of 
seeing: a mode of inquiry that respects the complexity of energy transitions without reducing them 
to oversimplified narratives. It allows us to move past the idea that more is always better—that 
bigger capacity, more investment, or faster growth will necessarily yield sustainability. Instead, it 
asks what kinds of systems endure, adapt, and integrate over time and under pressure. In this sense, 
the study contributes to three overlapping literatures: the structural analysis of energy systems, the 
application of interpretable machine learning in policy contexts, and the political economy of 
sustainability. It speaks to scholars interested in the systemic dimensions of renewable energy, as 
well as to practitioners seeking tools for grounded, context-sensitive policy intervention. Finally, this 
research insists that sustainability is not a fixed destination reached through technical compliance. It 
is a continuous process—fragile, political, and iterative—dependent on the ways in which societies 
organize, distribute, and govern their energy infrastructures. A sustainable energy future, then, will 
not be delivered solely through the expansion of capacity, but through the cultivation of systems that 
are as inclusive, resilient, and intelligent as the challenges they aim to address. 

Here, in this light, the shift to green power has to be seen not just as a material change—swapping 
coal for sun, or gas for wind—but as a structural switch of the energy-economy-ecology link. This 
change needs not just new tech but new thoughts: a move from straight, amount-based models to 
dynamic, quality-focused frameworks that can consider diversity, risk, and looped effects. Such a 
change is very important because the time of the Sustainable Development Goals is increasing. While 
building renewable energy infrastructure is key to achieving the goals related to climate, much more 
is required by the SDGs than just reducing emissions. They require equity, resilience, participation, 
and institutional integration—all aspects that cannot simply be measured with capacity metrics. 
Without looking at these features, the expansion of renewable energy will be very technocratic and 
extractive—it will create more inequality, which is what it is trying to get rid of. Decentralization and 
local engagement were found to be the key success factors in energy policy in Dobravec et al. (2021) 
and Razmjoo et al. (2021) research. Meanwhile, operational flexibility in system design was proven 
to be required by such factors in the research of Chen and Yang (2021). The above views present a 
simple but strong understanding: energy systems are a part of social technical systems. On them 
depends on the task success and end in case of an actual engineering relationship, per implied value 
and imagined future. Thus, the study is not only a part of the techie fine-tuning input for the use of 
green energy. It is a push to reconsider the check, plan, and control of energy systems. Bringing into 
the spotlight quality, growth action, diversification, and volatility-adjusted resilience, this work tries 
to widen the review terms for energy shifts. Setting nations into groups based on these aspects it 
gives a kind that is not set in stone or telling, but alive and open to interpretation: a map not of where 
countries are, but of how they react. In summary, this paper argues that sustainability as not a by-
product of scale but the outcome of structural design. Therefore, countries aspiring to lead in the 
global energy transition must pursue something beyond megawatts and carbon savings. They must 
pursue the deeper questions of what type of system is to be built, whom it serves, how it shall adapt, 
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and most importantly, whether it can last.  The subsequent sections detail the methodology used to 
operationalize these questions, followed by a comprehensive literature review that situates this 
study within the broader academic discourse. This is succeeded by an in-depth analysis of the data 
and empirical findings derived from the model. Finally, the paper concludes with a discussion of the 
results and their policy implications, offering insights into how this new perspective on energy 
system quality can inform sustainable energy transitions. 

2.  LITERATURE REVIEW 

The link between renewable energy development and its ripple effects on economic growth and 
sustainability of the environment, and policy making has been of keen scholarly interest over the last 
decades. Most of the existing studies have explored these links from a quantitative relationship 
between renewable energy consumption and various macroeconomic indicators. They bear positive 
links with growth and stability in most of the cases reported. Moreover, the degree of portfolio 
diversity and system resilience are found to be instrumental in enhancing the effectiveness of 
renewable energy transitions. This implies moving beyond economic and environmental metrics to 
the metrics of governance structures, policy capacity, and participatory mechanisms to assess their 
influences on energy transformation and equity. Despite the general advances, most works are still 
fragmentary, with structural quality measures very scarcely integrated, rendering complicated 
energy–economy–environment interactions less interpretable. It is this gap that the present study 
seeks to fill by providing a review that synthesizes the principal thematic constructs in the existing 
knowledge and identifies the research motivation for the study at hand, which is based on the 
multidimensional and interpretable approach. 

Table 1: Summary of Key Literature on Renewable Energy, Economic Growth,                                                                            
Environmental Impact, and Policy Dimensions 

Theme Author(s) Year Methodology Key Findings 

Renewable Energy and 
Economic Growth 

Li et al. 2021 Panel Regression 
Renewable energy consumption has a 
positive effect on financial development and 
economic growth. 

Renewable Energy and 
Economic Growth 

Simionescu et 
al. 

2020 ARDL Model 
Renewable energy use in EU countries is 
significantly and positively correlated with 
GDP. 

Renewable Energy and 
Economic Growth 

Șoavă et al. 2018 Panel Data Analysis 
Long-term renewable energy consumption 
supports economic growth. 

Renewable Energy and 
Economic Growth 

Apergis & 
Payne 

2011 VECM Causality Analysis 
Bidirectional causality exists between RE 
and GDP in Central American countries. 

Renewable Energy and 
Economic Growth 

Işık et al. 2017 
Linear and Non-linear 
Relationship Testing 

The nexus between tourism, renewable 
energy, and growth is complex and varies by 
region. 

Portfolio Diversity, System 
Stability, and Structural 
Quality 

Cîrstea et al. 2018 
Composite Sustainability 
Index 

Norway and Sweden lead with high 
renewable energy sustainability scores. 

Portfolio Diversity, System 
Stability, and Structural 
Quality 

Kukharets et al. 2023 
Threshold Regression 
Analysis 

Countries surpassing 32% RE consumption 
exhibit GDP growth without increased 
energy import dependency. 

Portfolio Diversity, System 
Stability, and Structural 
Quality 

Güler et al. 2024 Panel Data Analysis 
Investment, growth, and unemployment 
significantly influence renewable transition 
in OECD countries. 

Portfolio Diversity, System 
Stability, and Structural 
Quality 

Režný & Bureš 2019 
Extended Neoclassical 
Growth Model 

Different energy scenarios produce varying 
economic outcomes in the long term. 

Portfolio Diversity, System 
Stability, and Structural 

Formánek 2019 
Semi-parametric Spatio-
Temporal Analysis 

Regional GDP is spatially and temporally 
affected by RE consumption levels. 
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Theme Author(s) Year Methodology Key Findings 

Quality 

Environmental Impact and 
Emission Reductions 

Ren et al. 2020 
Dynamic Spatial Panel 
Model 

Renewable energy and economic growth 
reduce CO₂ emissions in the EU. 

Environmental Impact and 
Emission Reductions 

Sharma et al. 2021 
Panel Regression (8 
Asian Countries) 

RE consumption significantly reduces 
ecological footprint. 

Environmental Impact and 
Emission Reductions 

Bano et al. 2021 ARDL Bounds Testing 
Tourism and RE consumption improve 
environmental quality in Pakistan. 

Environmental Impact and 
Emission Reductions 

Balsalobre‐
Lorente et al. 

2018 
ARDL with Natural 
Resource Variables 

Electricity generation and natural resource 
use significantly influence CO₂ emissions. 

Policy Capacity, Governance, 
and Participation 

Šikšnelytė-
Butkienė et al. 

2019 
Neutrosophic 
MULTIMOORA 

Governance quality, social acceptance, and 
ecological footprint are key to sustainable 
energy. 

Policy Capacity, Governance, 
and Participation 

Dobravec et al. 2021 
Qualitative, Multi-level 
Energy Planning 

Local energy initiatives and multi-level 
governance are critical for RE transition. 

Policy Capacity, Governance, 
and Participation 

Razmjoo et al. 2021 
Literature Synthesis + 
Policy Commentary 

Communication between local and national 
levels is essential for sustainable energy 
policies. 

Policy Capacity, Governance, 
and Participation 

Chen & Yang 2021 
Process Design 
(Chemical Integration of 
RE) 

Flexible system design improves energy 
efficiency and integration outcomes. 

Country Heterogeneity, 
Clustering, and Income 
Thresholds 

Vyrostková et 
al. 

2024 
FMOLS (Fully Modified 
OLS) 

Higher GDP per capita correlates with 
increased RE investment in Eurozone 
countries. 

Country Heterogeneity, 
Clustering, and Income 
Thresholds 

Sudaryanto 2019 
Panel Regression (6 
Asian Countries) 

In some low-income countries, higher GDP 
levels may reduce RE consumption due to 
infrastructure gaps. 

Country Heterogeneity, 
Clustering, and Income 
Thresholds 

Yusoff et al. 2023 
Macroeconomic 
Determinants Analysis 

Economic growth, price trends, and policies 
shape RE development in Malaysia. 

Country Heterogeneity, 
Clustering, and Income 
Thresholds 

Omri & Nguyen 2014 
Cross-national Panel 
Data Analysis 

Income level and institutional factors 
determine RE consumption. 

Country Heterogeneity, 
Clustering, and Income 
Thresholds 

Cîrstea et al. 2018 
Clustering + Composite 
Index 

Scandinavian countries cluster together 
with high RE sustainability metrics. 

Oil Prices, External Shocks, 
and Strategic Renewable 
Transitions 

Tambari et al. 2023 
Comparative Panel 
Analysis (African 
Countries) 

Oil price increases incentivize RE 
investment in oil-importing countries. 

Oil Prices, External Shocks, 
and Strategic Renewable 
Transitions 

Borzuei et al. 2022 
Time Series Analysis 
(Iran) 

Energy prices and growth rates directly 
influence RE development. 

Oil Prices, External Shocks, 
and Strategic Renewable 
Transitions 

Saparulu et al. 2024 Panel Data Analysis 
RE investment contributes to both economic 
sustainability and GHG reduction. 

Oil Prices, External Shocks, 
and Strategic Renewable 
Transitions 

Candra et al. 2023 Panel Regression 
Renewable energy promotes environmental 
and economic sustainability jointly. 

 

The existing body of literature on renewable energy has continuously emphasized positive impacts 
on economic growth, macroeconomic stability, and environmental sustainability in different 
countries. Diversification of the portfolio and system stability has over the years emerged as a matter 
of good resilience and sustainability of the energy infrastructure and enables the country to better 
withstand economic as well as environmental pressure. Some more empirical evidence shows that 
the adoption of renewable energy is instrumental in reducing greenhouse gas emissions and 
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improving air quality; that is, it are basic preconditions of the global sustainability agendas (Ren et 
al., 2020; Sharma et al., 2021). These benefits, however, are contingent upon specific country-level 
factors or variables, such as the maturity of the infrastructure, the quality of governance, and 
capacity in policies. This is in light of the fact that such factors play a crucial role in not only the 
effectiveness but also the equity of investment in renewable energy (Dobravec et al., 2021). Thus, 
advanced clustering analyses do not imply the existence of pronounced heterogeneity in national 
responses to the integration of renewable energy; it simply underscores, once more, the imperative 
need for context-sensitive and socially inclusive policy frameworks if truly sustainable transitions 
are to be achieved (Vyrostková et al., 2024; Sudaryanto, 2019). Secondly, and most importantly, 
macroeconomic externalities, particularly volatile oil prices, do play a very significant role in the 
formulation of a renewable energy strategy, especially in economies that are highly fossil fuel-
dependent (Tambari et al., 2023). This forms the basis for undertaking the current in-depth research 
initiative that critically gaps qualitative dimensions grounding sustainability in energy systems. 
Earlier studies have based their assessment more on capacity-based quantitative measures that do 
not adequately relate the complicated interaction effecting structural stability, diversification 
balance, and risk-adjusted performance. What little there is is hardly legible in terms of the energy–
economy–environment interactions that are truly multivalent, with many analyses conducted on the 
basis of oversimplified econometric modelling or "black-box" machine learning methods.  

Our study has developed a three-dimensional sustainability-based framework which combines 
growth dynamics, energy source diversity, and volatility-adjusted stability in composite indicators. 
Making black box results of artificial intelligence techniques transparent and interpretable, this 
paper provides an insight into how these dimensions interact toward macroeconomic and 
environmental outcomes. Countries are also newly clustered based on their structural response 
profiles—not mere traditional economic or geographic classifications—to enable the detection of 
specific policy typologies that can better accommodate the diverse sustainability tracks of different 
countries. This research goes beyond the conventional assessment of renewable energies by 
methodological innovation as well as by theoretical clarity. It provides policymakers and researchers 
with a strong analytical view to understand and control energy shifts in a way that fully includes 
economic growth, environmental care, and social fairness— foundations of sustainable 
development. So our input is not just to the academic talk but also to the real ruling of energy 
systems in a time that asks for quick and all-around sustainability. 

3.  MODEL SPECIFICATION AND DATA 

3.1 Model Specification 

This section presents the data sources, analytical framework, and methodological tools that were 
applied to study the multiple links from renewable energy system quality to macroeconomic and 
environmental outcomes at the country level. In this study, we used comprehensive data on 
renewable energy consumption and major economic and environmental indicators. High-capacity 
machine learning methods with interpretable models are then applied to uncover complex, 
nonlinear interactions. The study then explains how growth rate, portfolio diversity, and risk-
adjusted stability are synthesized into composite indicators and how the SHapley Additive 
exPlanations (SHAP) values are applied. It further explains how unsupervised clustering algorithms 
help to classify countries based on their structural response similarities, thus offering an informed 
perspective on the different energy transition journeys. 

3.2. Data 

Our primary dataset comprises annual renewable energy production volumes for seven countries, 
encompassing solar, wind, hydroelectric, and other renewable energy sources measured in 
megawatt-hours (MWh). These raw production figures capture detailed year-to-year variations and 
the compositional differences across energy sources. Building upon this data, we constructed three 
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composite indicators representing renewable energy system quality: growth rate (Green Energy 
Growth Rate), source diversity (Energy Diversity Index), and volatility-adjusted stability (Risk 
Adjusted Green Score). These indicators allow for a multi-aspect analysis of system performance, 
showing not just the quantitative changes in energy production but also the structural balance and 
stability of the energy portfolio. What follows gives a detailed account of computation methods for 
these composite indicators, machine learning models applied, and interpretability techniques used. 
Besides the newly constructed indicators, the study brings key economic and environmental 
variables into the picture of understanding the impact of the renewable energy system. Table 2 gives 
the full set of variables used in the analysis and their detailed descriptions. 

Table 2. Variables Used in the Study and Their Descriptions 

Variable Name 
(Abbreviation) 

Description Unit / Type Source 

GEGR 
Annual growth rate of renewable energy 
consumption 

Percentage 
(%) 

Calculated from energy mix 
data 

EDI 
Shannon entropy-based measure of energy 
source diversity 

Index (0-1) 
Calculated from energy mix 
data 

RAGS 
Ratio of energy growth to volatility, indicating 
stability 

Ratio 
(unitless) 

Calculated from energy mix 
data 

GDP 
Annual percentage growth of Gross Domestic 
Product 

Percentage 
(%) 

World Bank 

FDI Net inflows of FDI as a percentage of GDP 
Percentage 
(%) 

UNCTAD 

GS National gross savings as a percentage of GDP 
Percentage 
(%) 

World Bank 

REV Government revenue as a percentage of GDP 
Percentage 
(%) 

IMF Government Finance 
Statistics 

EXP 
Government expenditure as a percentage of 
GDP 

Percentage 
(%) 

IMF Government Finance 
Statistics 

PM 
Estimated environmental damage from 
particulate matter 

Index / µg/m³ 
World Health Organization 
(WHO) 

*The first three variables (GEGR, EDI, RAGS) were calculated by the author using raw energy and volatility data based on 
standard methods in the energy economics literature. 

 

All data preparation and analysis were done using the Python programming language in the 
environment of Jupyter Notebook. Data cleaning, processing, and analysis steps were executed in a 
series of commands using libraries such as pandas and numpy. The time series properties of the 
variables were checked, and the stationarity of the variables was confirmed with the Augmented 
Dickey-Fuller test prior to analysis. The correlation analysis and tests of multicollinearity of variables 
were run in Python with the numpy and seaborn libraries. Then the dataset was put into a method-
compatible way to apply analytics, ready for machine learning models and statistical analyses. This 
phase provided a key step in the check for result soundness and validity. During the modeling phase, 
the XGBoost Regressor algorithm was implemented in the Python environment. To improve the 
model performance, I ran the hyperparameter optimization systematically using the Grid Search 
method. The table below shows the main hyperparameters of the XGBoost algorithm and how they 
affect model performance. 
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Table 3: Key Technical Features and Hyperparameters of XGBoost Regressor 

Parameter Description 
Typical Values / 

Range 
Impact on Model Performance 

learning_rate 
Step size shrinkage used to 
prevent overfitting 

0.01, 0.05, 0.1 
Controls how quickly the model adapts; 
smaller values lead to slower but potentially 
more accurate convergence 

max_depth 
Maximum depth of each 
decision tree 

3, 5, 7 
Controls model complexity; deeper trees can 
capture more interactions but risk overfitting 

n_estimators Number of boosting rounds 100, 300, 500 
More rounds can improve performance but 
increase training time and overfitting risk 

subsample 
Fraction of training samples 
used for each tree 

0.6, 0.8, 1.0 Introduces randomness to prevent overfitting 

colsample_bytree 
Fraction of features sampled 
for each tree 

0.6, 0.8, 1.0 
Controls feature sampling to reduce 
correlation and overfitting 

early_stopping_rounds 
Number of rounds without 
improvement to stop training 

10 
Stops training if no improvement to validation 
metric, preventing overfitting 

 

4. METHODOLOGY 

A mostly mathematical description of the method (method or model) to be used in a theoretical or 
empirical analysis. Appropriate application based on the chosen method computer implementation 
using a software package.  

This part gives a simple overview of the main analytical methods and technical steps used in the 
study. First, the composite renewable energy quality indicators from actual production data are 
defined, accompanied by their calculation methods. These were followed by first undertaking basic 
data checks, stationarity and correlation assessments to ascertain the suitability of the dataset for 
modeling. SHapley Additive exPlanations (SHAP) values were used to interpret model outputs for a 
feature-by-feature analysis of the contribution of each to target variables. That is, unsupervised 
KMeans clustering was run on SHAP values to find structural response patterns of the countries’ 
energy systems. From simple to high dimensionality and interpretability, this methodological 
framework allows for in-depth analysis of the economic and environmental impacts of renewable 
energy systems. 

4.1. Renewable Energy Indicators: Definitions and Construction 

The analysis starts by constructing key indicators that characterize the quality of renewable energy 
systems based on raw production data from various energy sources. These composite indicators not 
only measure the quantity but also capture the structural and dynamic aspects of renewable energy 
production at the national level. 

The first indicator, the Green Energy Growth Rate (GEGR), represents the annual percentage change 
in a country’s renewable energy production capacity. It quantifies how rapidly a country expands its 
total green energy output each year. Mathematically, it is defined as: 

𝐺𝐸𝐺𝑅𝑖,𝑡 =  
𝑅𝐸𝑖,𝑡−𝑅𝐸𝑖,𝑡−1

𝑅𝐸𝑖,𝑡−1
𝑋100   (1) 

where  denotes the renewable energy production of country iii in year ttt, measured in units such as 
megawatt-hours (MWh), and t−1 refers to the previous year. This annual growth rate is computed 
for each year within the period 2000 to 2023, and an average growth rate over this entire period is 
calculated to summarize the typical expansion velocity of renewable energy capacity: 

𝐺𝐸𝐺𝑅𝑖,𝑡 =
1

𝑇−1
∑ 𝐺𝐸𝐺𝑅𝑖,𝑡

2023
𝑡=2001    (2) 

The second indicator, the Energy Diversity Index (EDI), measures the diversity and balance of renewab-
le energy sources within a country's energy portfolio. It is based on the Shannon Entropy formula: 
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𝐸𝐷𝐼𝑖 = ∑ 𝑝𝑖𝑗
𝑘
𝑗=1 . 𝑙𝑛𝑝𝑖𝑗 (3) 

Here, represents the proportion of renewable energy source j in the total renewable energy 
production of country i, and k is the number of renewable energy source types considered (such as 
hydro, solar, wind, biomass, geothermal). The EDI value ranges between 0 and ln(k), where a value 
of zero indicates complete reliance on a single energy source, and the maximum value corresponds 
to an equal distribution of energy production among all sources. Thus, higher EDI values reflect a 
more diversified and balanced renewable energy mix. 

The third indicator is the Risk-Adjusted Green Score (RAGS), designed to capture the stability of 
renewable energy growth by considering the volatility of the growth rates. It is calculated as a 
Sharpe-like ratio: 

𝑅𝐴𝐺𝑆𝑖 =
GEGR𝑖

𝜎𝐺𝐸𝐺𝑅𝑖
    (4) 

where GEGRi,  is the average green energy growth rate for country i, and   is the standard deviation 
(volatility) of the growth rate across the observed period. 

 Higher positive values of RAGS indicate that a country achieves strong and consistent growth in 
renewable energy capacity, while lower or negative values suggest unstable or fluctuating growth 
patterns. This multidimensional framework, grounded in fundamental production data, enables a 
comprehensive quantitative and qualitative assessment of renewable energy systems’ performance. 
These indicators serve as critical inputs for the machine learning models and interpretability 
analyses discussed in the subsequent sections. The construction and use of these composite 
indicators build upon established methods in the renewable energy literature, as exemplified by 
studies such as Cîrstea et al. (2018), Kukharets et al. (2023), and Li et al. (2021), who emphasize the 
importance of growth, diversity, and stability metrics in assessing energy systems. 

4.2. XGBosst Regressor  

In this study, the XGBoost Regressor algorithm was employed as the primary predictive model due 
to its effectiveness in modeling complex and nonlinear relationships (Chen & Guestrin, 2016). 
XGBoost is a gradient boosting method that sequentially builds weak learners, typically decision 
trees. At each iteration, the model adds a new tree to minimize the residual errors from previous 
predictions. 

The optimization of the model is based on minimizing a specified loss function. The general update 
formula is: 

𝑦⏞
𝑖

(𝑡)
= �̂�𝑖

(𝑡−1)
+ 𝑓𝑡(𝜒𝑖)  (5) 

where   is the prediction for the target variable at iteration t, and  is the newly added decision 

tree at iteration t. 

The loss function is typically defined as the mean squared error or a similar error metric: 

𝐿(𝑡) = ∑ 𝑙(𝑦𝑖𝑦
(𝑡−1) + 𝑓𝑡(𝑥𝑖)

𝑛
𝑖=1 ) + Ω𝑓𝑡  (6) 

Here, is the loss function,   is the true value, and Ω(ft)is a regularization term that penalizes 

model complexity. This structure of XGBoost enhances model accuracy while also helping to prevent 
overfitting. Consequently, it effectively models the complex relationships between renewable energy 
indicators and macroeconomic and environmental variables. Machine learning models are especially 
powerful at capturing nonlinear and complex interactions; however, they are often considered 
“black boxes” due to limited transparency in their decision-making processes. Therefore, to increase 
interpretability of model outputs and to analyze the contributions of variables to target predictions 
in detail, SHapley Additive exPlanations (SHAP) methodology was utilized (Lundberg & Lee, 2017).  
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4.3. SHapley Additive exPlanations (SHAP) 

SHapley Additive exPlanations (SHAP) are a method derived from game theory that calculates the 
contribution of each feature (variable) to the output of a machine learning model. These 
contributions, called Shapley values, fairly distribute the total model output among the features 
based on a cooperative game theory principle. 

Mathematically, for a model f and a data point x, the SHAP value  of feature  is computed over all 

subsets of features S⊆F∖{i}S (where F is the full feature set) as follows: 

∅𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝐒⊆𝐅∖{𝐢} [𝑓𝑆∪(𝑖)(𝑥𝑠𝑢(𝑖))− 𝑓𝑠(𝑥𝑠)]   (7) 

Here, fs (  denotes the model’s prediction when only the features in the subset S are used, while 

 represents the prediction when feature iii is added to that subset. SHAP analysis 

thus offers a mathematically consistent and transparent way to decompose the model’s output, 
showing how each feature contributes to shaping the predictions, whether those effects are positive 
or negative, and revealing the relative importance of each variable. In this study, SHAP was applied 
to the XGBoost model to provide a detailed understanding of how renewable energy indicators 
impact macroeconomic and environmental target variables. This approach makes complex model 
structures interpretable and yields results that are more accessible and meaningful for policymakers. 

4.4. K-Means Clustering Analysis 

Clustering analysis is an unsupervised learning technique aimed at grouping data points based on 
their similarities. In this study, the K-Means algorithm was used to classify countries based on the 
structural responses of their renewable energy systems derived from model outputs. K-Means 
partitions the dataset into a predetermined number of clusters, K, and assigns each data point to the 
cluster with the nearest centroid.  

Mathematically, given a dataset X={x1,x2,...,xn} and the number of clusters K, the objective is to find 
the cluster assignments S={S1,S2,...,SK} that minimize the sum of squared distances within clusters, 
expressed as: 

Argument of the minimum over S of the sum from k=1 to K of the sum over xi in cluster Sk of the 
squared Euclidean distance between xi and the cluster centroid μk1, that is: 

min𝑠 ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2𝑥𝑖∈𝑆𝑘
𝐾
𝑘=1        (8) 

where μk is the mean vector of all points in cluster Sk. 

The KMeans algorithm, originally proposed by MacQueen (1967), is a widely used unsupervised 
clustering technique that partitions data into a predetermined number of clusters by minimizing 
within-cluster variance.  

The technique sequentially designates every datum to the closest prototype and revises the 
prototype as the average of designated points until it gets to a halt. This is very simple and quick to 
compute, hence commonly used for practical purposes in the investigation of data, particularly when 
working with many dimensions. The tudy develops a two-dimensional representation of the 
response of each country's renewable energy system based on SHAP values of the predictive model. 
These SHAP vectors will be clustered by the KMeans algorithm in order to group countries that have 
similar structural behaviors in their energy systems. This classification will help in setting up energy 
policies sensitive to these unique characteristics. KMeans has key strengths: easy implementation, 
scalability to large datasets, and the interpretability provided by rather compact summaries of group 
traits that are offered by cluster centroids (Steinley, 2006). 

5. EMPIRICAL RESULTS AND DISCUSSION 

This section presents the findings derived from the dataset and the applied methodologies. The 
impacts of renewable energy indicators on macroeconomic and environmental variables are 
examined in detail using the XGBoost regression model and SHAP values. Additionally, clustering 
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analysis performed on SHAP outputs categorizes countries according to their structural responses to 
renewable energy systems. The findings offer insights into the direction and magnitude of variable 
effects, as well as the characteristic features of country groups. Model performance, variable 
importance, and clustering outcomes are discussed sequentially below. 

5.1. Unit Root Test and Autocorrelation Test Results 

Table 4. ADF Test Results 

Variable Form Model ADF Statistic p-value Lag (AIC) 

GEGR Level Constant -10.4354 0.0000 2 

GEGR Level Constant + Trend -10.6733 0.0000 2 

ΔGEGR First Difference Constant -8.3529 0.0000 8 

ΔGEGR First Difference Constant + Trend -8.3268 0.0000 8 

EDI Level Constant -6.7038 0.0000 6 

EDI Level Constant + Trend -7.2717 0.0000 6 

ΔEDI First Difference Constant -6.6364 0.0000 13 

ΔEDI First Difference Constant + Trend -6.6105 0.0000 13 

RAGS Level Constant -2.4271 0.1342 0 

RAGS Level Constant + Trend -2.5420 0.3073 0 

ΔRAGS First Difference Constant -12.2116 0.0000 0 

ΔRAGS First Difference Constant + Trend -12.1708 0.0000 0 

GDP Level Constant -3.5881 0.0060 3 

GDP Level Constant + Trend -3.7316 0.0204 3 

ΔGDP First Difference Constant -7.9176 0.0000 5 

ΔGDP First Difference Constant + Trend -7.8887 0.0000 5 

FDI Level Constant -8.9375 0.0000 0 

FDI Level Constant + Trend -9.4512 0.0000 0 

ΔFDI First Difference Constant -7.4615 0.0000 7 

ΔFDI First Difference Constant + Trend -7.4375 0.0000 7 

GS Level Constant -2.2644 0.1837 0 

GS Level Constant + Trend -2.2654 0.4532 0 

ΔGS First Difference Constant -12.3249 0.0000 0 

ΔGS First Difference Constant + Trend -12.2835 0.0000 0 

REV Level Constant -1.6540 0.4550 0 

REV Level Constant + Trend -1.6064 0.7899 0 

ΔREV First Difference Constant -13.5650 0.0000 0 

ΔREV First Difference Constant + Trend -13.5438 0.0000 0 

EXP Level Constant -2.0273 0.2747 0 

EXP Level Constant + Trend -2.0060 0.5982 0 

ΔEXP First Difference Constant -9.9177 0.0000 1 

ΔEXP First Difference Constant + Trend -9.8889 0.0000 1 

PM Level Constant -2.4695 0.1231 0 

PM Level Constant + Trend -2.8342 0.1847 0 

ΔPM First Difference Constant -12.4347 0.0000 0 

ΔPM First Difference Constant + Trend -12.3980 0.0000 0 
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All variables passed the ADF test in their differenced forms, exhibiting stationarity under both 
constant and constant-plus-trend models. The p-values were consistently zero, indicating a strong 
rejection of the unit root hypothesis. Lag selection based on the AIC criterion varied across the 
variables, reflecting optimal model adequacy. 

 

Figure 1. Correlation Matrix 

The correlation matrix of differenced variables reveals several notable relationships. For instance, 
government expenditure (EXP) and government revenue (REV) exhibit a strong positive correlation 
(0.68), indicating a close relationship between these fiscal variables. Conversely, the Risk Adjusted 
Green Score (RAGS) and Particulate Matter Damage (PM) have a strong negative correlation (-0.68), 
suggesting that higher stability and growth in green energy sources are associated with reduced 
environmental damage. Additionally, Gross Savings (GS) demonstrates a moderate positive 
correlation with both GDP growth (GDP, 0.28) and PM (0.42), signifying potential 
interconnectedness between economic growth, savings rates, and environmental outcomes. Overall, 
this matrix underscores varying degrees of associations, reflecting complex interactions between 
economic performance, fiscal indicators, and environmental metrics within the analyzed dataset. 

5.2. XGBoost Model Results 

Results obtained from the XGBoost regressor feature importance indicate that for most target 
variables, including GDP Growth, Gross Savings, Revenue as a percentage of GDP, Expense as a 
percentage of GDP, and Particulate Damage, the RiskAdjustedGreenScore proves to be the most 
important predictor, with importance scores of 0.75 or over. For Foreign Direct Investment (FDI), 
that would be GreenEnergyGrowthRate, the first feature and with a score around 0.20. These results 
underline the importance of the conditions of stability of the renewable energy system with respect 
to most broad macroeconomic and environmental effects. 
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Table 5. XGBoost Regressor Feature Importance 

Target Variable Most Influential Feature 

GDP RAGS (≈ 0.76) 

FDI GEGR (≈ 0.20) 

GS RAGS (≈ 0.96) 

REV RAGS (≈ 1.00) 

EXP RAGS (≈ 0.99) 

PM RAGS (≈ 0.99) 

 
 

 
Figure 2. XGBoost Regressor Feature Importance Scores 

Figure 2 shows the relative priority of three indicators for renewable energy across six goals. The 
RiskAdjustedGreenScore stands out by a large margin as the most important feature for GDP 
Growth, Gross Savings, Revenue as a percentage of GDP, Expense as a percentage of GDP, and 
Particulate Damage. On the other hand, Green Energy Growth Rate and Energy Diversity Index have 
very low importance ratings, though the former moderately influences FDI. These findings further 
validate that in molding financial and environmental results; stable adjusted renewable energy 
growth plays a very important part. 

 
Table 6. XGBoost Regressor Performance Metrics 

Target Variable R² RMSE MAE MAPE (%) 

GDP 0.1166 3.1091 1.9380 5.01 

FDI 0.1206 2.5548 1.5771 3.13 

GS 0.8902 0.0930 0.0685 2.30 

REV 0.9107 0.1281 0.0844 2.80 

EXP 0.9289 0.1070 0.0678 2.07 

PM 0.9870 0.1425 0.1040 5.30 

The performance metrics of the XGBoost regressor describe varying levels of explanatory power 
across the target variables. The model explains a substantial proportion of variance for grosssav, rev, 
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gdp, exp, and partic with R² values greater than 0.89. Correspondingly, these variables show low 
error metrics (RMSE, MAE, and MAPE), hence relatively accurate predictions. However, r-squared 
values for the gdpgrowth and fdi are much lower at around 0.12, indicating that the model fit is quite 
low for these targets. This stark discrepancy may embody the true essence of the word "difficult" 
that has been ascribed to the term "complex" in describing the nature of the variables gdpGrowth 
and fdi, laden with all forms of external influences. 

5.3. SHAP Analysis Results 

SHAP analysis is one of the powerful techniques that can make machine learning model predictions 
interpretable by quantifying the contribution of each feature to individual predictions. In this study, 
we applied SHAP to understand the prediction decisions for XGBoost models across multiple target 
variables like GDP Growth, Foreign Direct Investment, and others. Our main focus was to check the 
relative contributions of the three key indicators for renewable energy—Green Energy Growth Rate, 
Energy Diversity Index, and Risk-Adjusted Green Score—to each target variable. The main research 
question that guided this analysis was: “What is the macroeconomic and environmental outcome of 
the most important component in renewable energy?” Having computed the average SHAP values as 
the mean impact of each energy indicator on each target variable, we then went further to establish 
for each target variable the most influential energy indicator and its corresponding average SHAP 
score. This provides a transparent, quantitative look into the varying roles different dimensions of 
renewable energy holdings play in economic and environmental dynamics. 

Table 7 – Average SHAP Values 

Target GEGR ΔEDI ΔRAGS 

EXP 0.0052 0.0073 0.0152 

FDI 0.1622 0.1549 0.0428 

GDP 0.2594 0.1832 0.0748 

GS 0.0068 0.0085 0.1212 

PM 0.0112 0.0125 0.6111 

REV 0.0041 0.0037 0.0517 

Average SHAP values tell us that the RiskAdjustedGreenScore influences ExpenseGDP, Gross Savings, 
and Particulate Damage— most particularly on environmental damage. The other elements have 
more visible effects on GDP Growth and FDI. Therefore, the results obtained above confirm that 
there are diverse effects of the indicators of renewable energy for the macroeconomic and 
environmental objectives. 

Table 8 – Most Influential Energy Indicator 

Target Most Influential Energy Feature Mean SHAP Score 

EXP ΔRAGS 0.0152 

FDI GEGR 0.1622 

GDP GEGR 0.2594 

GS ΔRAGS 0.1212 

PM ΔRAGS 0.6111 

REV ΔRAGS 0.0517 

It shows the most influential renewable energy indicator for each target variable based on the 
highest mean SHAP scores. Mostly driving the variation in ExpenseGDP, Gross Savings, Particulate 
Damage, and RevenueGDP is the RiskAdjustedGreenScore, indicating its critical role in both 
economic and environmental contexts. On the other hand, GreenEnergyGrowthRate is the leading 
factor for FDI and GDP Growth, thus indicating its importance in economic expansion. The above 
findings further distinctify the dimensions of renewable energy with their different levels of 
macroeconomic and environmental results. 
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Figure 3. SHAP Values Showing Feature Contributions Across Target Variables 

The SHAP value plots show the varied and particular impacts of the indicators of renewable energy 
on selected macroeconomic and environmental outcomes. The Risk-Adjusted Green Score proves 
pretty strong against the different dimensions, particularly in explaining variation in particulate 
damage and expenditure as a percentage of GDP. Such strong effects are not shown in Green Energy 
Growth Rate and Energy Diversity Index, which support their roles in economic dynamics. Higher 
values for these indices mostly show better performances in economic dimensions and have a 
somewhat linear relationship with the environmental dimensions. These results draw attention to 
the different roles and relative importance of the dimensions of growth, diversity, and stability of the 
renewable energy system in the diverse paths of development of the country. 

5.4. Clustering Analysis of Country-Level Responses to Renewable Energy Indicators 

The aim of the study is to model macroeconomic and environmental responses based on three key 
indicators of renewable energy: growth rate, diversity, and stability of its production. It is herewith 
assumed that SHAP values have enabled us to quantitatively capture how these features of energy 
are manifested. The profiles of response, which are 18 dimensional (that is, three indicators by six 
target variables) are clustered by the KMeans algorithm. This clustering will then make it possible to 
take a more aggregate as well as between-country contrast, enabling more nuanced policy findings. 
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Table 9. Description of K-Means Clusters 

Cluster Countries Count Description 

0 
USA, IND, DEU, FRA, 
BRA, CAN 

6 
Broad and balanced profile. SHAP effects are moderate across most axes. 
Exhibits mid-level sensitivity to energy in investment and environmental 
dimensions. Indicates systemic stability. 

1 AUS 1 
Distinct country profile. Shows high sensitivity to energy in the growth (GDP) 
dimension. Moderate responses in investment and environmental indicators. 
Positioned uniquely. 

2 GBR 1 
Country with the highest SHAP impacts. Exhibits strong responsiveness to 
energy variables, particularly in investment (FDI) and environmental 
domains. Reflects a highly proactive renewable energy policy. 

 
Table 10. K-Means Clustering Analysis by Country 

Country GDP_GEGR GDP_ΔEDI FDI_GEGR FDI_ΔEDI PM_GEGR PM_ΔEDI Cluster 

USA 0.8519 0.7040 0.2605 0.2748 0.0626 0.1810 0 

IND 0.8498 0.6140 0.2937 0.3980 0.1077 0.0611 0 

DEU 1.0656 0.6519 0.4293 0.4193 0.0340 0.1138 0 

GBR 0.6390 0.5296 2.1749 1.0519 0.1215 0.0730 2 

FRA 0.9335 0.6091 0.5469 0.4137 0.0826 0.0755 0 

BRA 1.7164 1.8932 0.2914 0.1467 0.0267 0.0471 0 

CAN 0.4890 1.1320 0.5785 0.8768 0.0971 0.0625 0 

AUS 0.4828 0.3046 1.0786 0.5369 0.0519 0.0627 1 

 

The analysis of K-Means clustering reveals different structural responses among countries. The 
groupings are based on the indicators of renewable energy. Evidently, these prove something about 
the countries. The first cluster, Cluster 0, among which are the largest economies— the USA, India, 
Germany, France, Brazil, and Canada— presents very little effect from RiskAdjustedGreenScore, as 
indicated by SHAP values near zero. Rather, the related GreenEnergyGrowthRate and EnergyDiver-
sityIndex show stronger effects on nearly all the economic variables for FDI and GDP growth. Indeed, 
the effects that have hitherto been wrought by these energy indicators on the environmental 
variable ParticulateDamage are relatively low within this cluster. It seems to highlight short-term 
economic outcomes in the consideration of energy policies. The second cluster, Cluster 1, whose 
membership is of Australia alone demonstrates moderate impacts of energy in FDI, GDP growth, and 
ParticulateDamage, wherein the SHAP score for GreenEnergyGrowthRate with respect to FDI is 
marked at approximately 1.07. This cluster may represent a balanced approach where investment 
activities are such that the environment is considered an issue that needs to be optimized jointly. The 
UK, in Cluster 2, is distinguished by the highest SHAP impact on FDI through Green EnergyGrowth 
Rate (about 2.17) concomitant with a very strong effect on GDP Growth. A more than positive 
relationship between the increment in production of green energy and that of FDI is observed in the 
case of the UK, underlining the prominence of the UK in channeling the green energy upswing for 
economic advancement. These clusters demonstrate the heterogeneity at which the countries' 
economies and environments respond to the dynamics of renewable energy and argue for the need 
for customized policy frameworks directed at specific country energy-economy-environmental 
interactions. 
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Figure 4. SHAP-Based Energy Impact Profile by Country 

 

5. CONCLUSION 

This study aimed to deepen the understanding of how renewable energy systems influence national 
macroeconomic and environmental outcomes by moving beyond traditional capacity-based 
evaluations. Focusing on seven countries—Australia, Brazil, Canada, Germany, France, the United 
Kingdom, and the United States—over the 2000–2023 period, the research sought to capture not 
only the scale but also the structural qualities of renewable energy production. To this end, the 
analysis began with raw production data disaggregated by renewable sources such as solar, wind, 
hydroelectric, and other renewables. From these foundational data, three composite indicators were 
constructed: the Green Energy Growth Rate (GEGR), reflecting the annual percentage increase in 
total renewable energy output; the Energy Diversity Index (EDI), based on Shannon entropy, 
quantifying the balance and variety in energy portfolios; and the Risk-Adjusted Green Score (RAGS), 
measuring the stability of growth by normalizing expansion rates against their volatility. These 
indicators collectively enable a multifaceted evaluation of renewable energy systems, incorporating 
both quantitative and qualitative dimensions critical for sustainability assessments.  Following the 
development of renewable energy indicators, the study rigorously tested the stationarity of all 
variables using the Augmented Dickey-Fuller (ADF) test under both constant and trend specifica-
tions. The stationarity of differenced series at a 5% significance level ensured the appropriateness of 
subsequent time series and machine learning analyses. Correlation matrices and heatmaps unveiled 
mostly non-linear and intricate interactions between renewable energy indicators and macroecono-
mic-environmental factors, thus motivating a preference for non-linear models. We based our 
modeling work on the XGBoost Regressor, the gradient boosting variant reputed for its application in 
solving problems with high non-linearities. The model was trained using a grid over all possible 
combinations of parameters and further fine-tuned using cross-validation to account for all problem 
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intricacies. In several instances, the modeling work delivered very high R² values for major targets 
like fiscal metrics and particulate damage greater than 90%, hence proving how well the machine 
can catch the involved trends within the energy-economy-environment relationship. To remedy the 
‘’black-box’’ concern often associated with machine learning, the current study applied SHapley 
Additive exPlanations (SHAP). This enabled us to quantitatively measure the contribution of each 
indicator of renewable energy to the predicted results, thus ensuring a transparent view of their 
relative importance and directions. This bridges the gap between explanatory clarity and policy 
conclusions, though most of the previous studies on the impact of renewable energy were based on 
capacity only. Structural and qualitative aspects have not received enough consideration in research. 
Measures of diversity and instability are equally salient. Much conventional empirical modeling is 
wanting in the face of such dynamic, non-linear processes that could directly inform policy in an 
intelligible manner. To address this issue, the present study incorporates composite quality 
indicators (GEGR, EDI, RAGS) with state-of-the-art explainable artificial intelligence (XGBoost with 
SHAP) and unsupervised clustering algorithms (KMeans) into a single analytical framework that not 
only models the nuanced energy-economy-environment interaction but also facilitates country 
classification due to structural response profiles. This, in turn, facilitates more context-sensitive 
analysis and policy prescription. Findings indicate that a country's structural response profile is an 
important determinant of the effectiveness of a policy prescription. The RAGS (Risk-Adjusted Green 
Score) came out to be decisive in lowering particle pollution and improving fiscal health, showing 
that sustainability is more about resilient and balanced growth than capacity expansion. This is in 
line with the new sustainability direction that calls for integrated actions reconciling economic 
development, environmental care, and social equality. Further, the diversity among the clusters of 
countries shows that energy policies cannot be uniform. For instance, countries like the UK, showing 
strong sensitiveness in terms of energy expansion toward renewable sources as well as investment 
and environmental targets, need a different strategic focus compared to Australia or the USA. Thus, 
making interventions at the policymaking level to correspond with structural national features will 
help use energy diversity as well as stability metrics for the dual betterment of economic as well as 
ecological returns. In summary, the methodological innovations and empirical insights of this study 
argue for a paradigm shift in renewable energy policy and investment from an emphasis on “more 
renewable energy” to greater consideration of “better, diversified, and stable renewable energy.” The 
latter is necessary for achieving the Sustainable Development Goals and transforming the world’s 
post-Covid-19 recovery into a precept of a fair and resilient energy future. This research adds to 
existing literature by providing a solid, fact-based analytical framework that not only offers cross-
cutting, foresight strategic opportunities for optimization at the structural level but also goes toward 
capturing the multi-faceted nature of renewable energy systems and some of its differential impacts 
across countries to better inform more adaptive and equitable policy development. This calls for a 
consideration in future research, thus: how to go about it, plus the added dimensions of the 
technological innovation diffusion, social acceptance metrics, and geopolitical factors. Longitudinal 
analyses monitoring real-time effects of policy interventions should add one more step toward 
understanding and responding to the issues. Ultimately, though, the real need for getting used to 
complex interpretative energy system analyses will be important in dealing with the ͏unprecedented 
dilemmas and, indeed, opportunities of the global energy transition. 
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