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This study analyzes the long-run relationships among the STOXX Low Carbon Footprint Price Index, oil 

prices, carbon allowance prices under the EU Emissions Trading System (EU ETS), and the STOXX 600 

Technology Index over the period from February 9, 2016, to March 31, 2025. The aim is to understand 

how climate policy instruments and sectoral developments, particularly in technology and energy 

markets, influence low-carbon financial assets. The analysis applies the Residual Augmented Least 

Squares (RALS) cointegration method, which accounts for non-normal error distributions and higher-

order moment conditions, offering advantages over traditional techniques. Unlike the Engle-Granger 

approach, which fails to detect a cointegrating relationship, RALS identifies a statistically significant 

long-term connection among the variables. Long-run coefficients are estimated using FMOLS, DOLS, 

and CCR methods, all of which reveal consistent and significant positive effects of the technology index, 

carbon allowance prices, and oil prices on the low-carbon footprint stock. Notably, the STOXX 600 

Technology Index shows a stable coefficient of around 0.81, underscoring the sector's critical role in 

advancing low-carbon investments. The positive impact of carbon prices aligns with expectations 

about the incentivizing role of emissions trading, while higher oil prices appear to enhance the appeal 

of low-carbon assets, possibly due to substitution effects. These findings offer new empirical insights 

into the financial implications of climate policy and market dynamics, contributing to the literature and 

informing investors and policymakers focused on sustainable economic transition.
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1.  INTRODUCTION 

In recent years, growing concerns over climate change, increasing energy security challenges, rapid 
technological advancements, and heightened environmental awareness among consumers have 
significantly accelerated global investment in renewable energy (Sadorsky, 2012; Çelik vd., 2022). 
These dynamics have positioned the renewable energy sector as one of the fastest-growing areas 
within the global energy industry. Although initial investment costs for clean energy technologies 
remain relatively high, efforts to achieve environmental sustainability and build resilience against 
the climate crisis have driven these investments (Fazlollahi and Ebrahimijam, 2017). According to 
the Renewables 2024 Global Status Report, approximately USD 1.3 trillion in climate finance was 
allocated annually during the 2021-2022 period, nearly double that of the previous biennium. A 
substantial portion of this funding was directed toward carbon emission reduction initiatives, with 
investments in renewable energy sources such as solar and wind, as well as low-carbon transportation 
infrastructure, taking precedence. During this period, low-carbon transport projects accounted for 
29% of total mitigation finance, while renewable energy investments represented 43%. These 
underscore that investments in clean energy are motivated not only by environmental concerns but 
also by economic transformation objectives. Furthermore, macroeconomic factors such as fluctuations 
in oil prices and carbon pricing mechanisms serve as significant policy tools influencing investments 
in alternative energy. Therefore, a comprehensive understanding of the financial mechanisms 
underpinning clean energy is critical for achieving sustainable growth and the success of energy 
transition policies. 

Jones and Kaul (1996) explain the mechanism between oil prices and stock prices primarily within 
the framework of the cash flow and discount rate-based valuation model developed by Campbell and 
Shiller (1988). According to this model, an increase in oil prices generally raises production costs, 
thereby reducing firms’ profitability and expected cash flows, which in turn leads to a decline in 
stock prices. For instance, rising oil prices can exert cost pressures particularly on energy-intensive 
sectors, negatively impacting corporate earnings. Furthermore, increases in oil prices can elevate 
inflation and interest rates, resulting in higher discount rates that reduce the present value of future 
cash flows and negatively affect stock prices. Numerous studies support this negative relationship 
between oil prices and stock returns (Papapetrou, 2001; Oberndorfer, 2009; Miller and Ratti, 2009; 
Filis, 2010; Ready, 2018; Sharma et al., 2018). 

Although increases in oil prices generally exert negative pressure on overall stock markets, certain 
sectors may actually benefit from such developments. One such sector is clean energy, which has 
gained attention as part of global efforts to reduce carbon emissions through the adoption of 
alternative energy sources. In this regard, a notable substitution relationship exists between fossil 
fuel markets and clean energy stock markets, particularly on the demand side. As fossil fuel prices 
rise, demand for these traditional energy sources tends to decline, thereby fostering greater 
investment in clean energy technologies and contributing to upward movements in clean energy 
stock prices. Moreover, on the supply side, the expansion of renewable energy depends heavily on 
technological innovation, as the industry is characterized by high R&D intensity and structural 
complexities features similar to those found in the semiconductor segment of the photovoltaic sector 
(Song et al., 2019). 

One of the key mechanisms that promote investment in clean energy is the European Union 
Emissions Trading System (EU ETS). This system imposes a cap on the amount of carbon dioxide 
that firms can emit by allocating tradable emission permits. By placing a binding limit on greenhouse 
gas emissions, the EU ETS increases the cost of energy production from carbon-intensive sources 
such as coal, making renewable energy alternatives more economically viable and competitive 
(Hanif et al., 2021). Within this framework, Welfens and Celebi (2020) examine the relationship 
between carbon prices and stock valuations from a market-based perspective. Firms holding a 
surplus of emission permits are required to record them as assets on their balance sheets. As the 
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market price of these permits rises, the total valuation of such firms increases, which positively 
affects their stock prices. Conversely, a decline in carbon prices may reduce expected profitability 
and lead to a decrease in stock values. Since the EU ETS covers approximately 45 percent of the EU’s 
total value-added, including the industrial and energy sectors, large-scale firms operating in these 
areas are particularly sensitive to fluctuations in carbon permit prices. Moreover, firms that develop 
innovative and carbon-reducing technologies tend to gain competitive advantages within this 
market structure, which translates into higher profitability and elevated stock performance. Higher 
carbon permit prices also stimulate investment in the alternative energy sector and support its 
expansion and market development (Kumar et al., 2012). Empirical research provides further 
evidence of a positive relationship between carbon permit prices and the stock prices of clean energy 
firms (Hu et al., 2019; Welfens and Celebi, 2020; Chun, 2022; Hanif et al., 2021). 

This study contributes to the existing literature by employing the Residual Augmented Least Squares 
(RALS) cointegration methodology to analyze the long-run interdependencies among the STOXX 
Low Carbon Footprint Price Index, oil prices, carbon allowance prices under the EU Emissions 
Trading System (EU ETS), and STOXX 600 Technology Index for the period from February 9, 2016, to 
March 31, 2025. Unlike traditional cointegration methods, the RALS framework incorporates higher-
order moment conditions and accounts for non-normal error distributions, thus offering more 
robust inferences in leptokurtic data common features in financial time series. By integrating both 
environmental regulatory variables (e.g., carbon permit prices) and sectoral indices representing 
clean energy and technological innovation, this research provides a holistic understanding of how 
climate policy instruments interact with financial markets. The inclusion of technology stocks 
recognizes the critical role of innovation in scaling clean energy solutions, especially under supply-
side dynamics that demand significant research and development investment. The findings yield 
new empirical insights into the nexus between carbon pricing, oil prices, and the market valuation of 
low-carbon and technology-oriented assets. This offers valuable implications for investors seeking 
climate-aligned strategies and for policymakers aiming to design effective mechanisms that foster 
sustainable economic transitions while enhancing market resilience amid in the context of ongoing 
climate change challenges. 

The remainder of the paper is structured as follows. Section 2 reviews the relevant literature. Section 
3 describes the data, econometric methodology, and the empirical design of the study. Section 4 
presents and discusses the empirical findings in detail. Finally, the conclusion section summarizes 
the main results, discusses the policy implications. 

2.  LITERATURE REVIEW 

The dynamic interaction between oil prices and clean energy stock prices has been widely 
investigated in the literature, yielding diverse findings depending on the period and methodology 
employed. Henriques and Sadorsky (2008) utilized a Vector Autoregressive (VAR) model on daily 
data from January 3, 2001, to May 30, 2007, and concluded that oil prices had only a minimal impact 
on the stock prices of alternative energy companies. This finding was later supported by Sadorsky 
(2012), who applied multivariate GARCH models to an extended period (January 1, 2001 – 
December 31, 2010), reaching similar conclusions regarding the limited influence of oil prices. 

Contrary to these results, Kumar et al. (2012) examined the relationship over a different sample 
period (April 22, 2005 – November 26, 2008) using a comparable econometric framework. They 
found that oil prices had a statistically significant and positive effect on clean energy stock returns, 
while carbon allowance prices had no significant impact. 

More recent studies have employed frequency-domain and nonlinear methods to uncover time-
varying relationships. For instance, Reboredo et al. (2017), using linear and nonlinear causality 
techniques in the time-frequency domain along with wavelet coherence analysis over the period 
January 1, 2006 – March 16, 2015, found a weak short-run relationship between oil and clean energy 
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stocks, which strengthened in the long run. Similarly, Song et al. (2019) employed the connectedness 
framework developed by Diebold and Yılmaz (2014) to analyze the interconnectedness between oil, 
natural gas, coal, and clean energy stock markets from June 15, 2009, to October 26, 2018. Their 
findings suggest that oil prices exert a particularly strong influence on clean energy stock prices 
during this period. 

Beyond price levels, several studies have explored the role of oil price uncertainty in affecting clean 
energy stocks. Dutta (2017), analyzing data from May 10, 2007, to June 30, 2016, reported that oil 
price uncertainty had a more pronounced effect on clean energy stock volatility than oil price levels 
themselves. According to the study, increasing uncertainty led to heightened volatility in clean 
energy markets. 

Using the same time span, Fazlollahi and Ebrahimijam (2017) applied the ARDL cointegration 
approach and found no significant short-term impact of oil price volatility on clean energy stocks. 
However, in the long run, both oil prices and oil price uncertainty positively influenced clean energy 
stock prices, with the magnitude of the oil price effect being stronger. 

More nuanced evidence is provided by Çelik et al. (2022), who used an asymmetric DCC-GARCH 
model and revealed that the conditional correlation between clean energy stocks and oil price 
uncertainty is negative. Furthermore, Arfaoui et al. (2025) investigated sector-specific effects using 
the Wavelet Quantile Correlation method for the period from February 22, 2022, to July 15, 2024. 
Their findings highlight sectoral heterogeneity: while solar energy firms were found to be both 
positively and negatively affected by oil uncertainty in the short run, renewable fuel firms 
experienced positive impacts in both the short and medium run. Nevertheless, all sectors were 
negatively affected by oil uncertainty in the long term. 

The literature on the interaction between carbon prices and clean energy stock returns generally 
suggests a limited direct relationship. Kumar et al. (2012) found no significant link between carbon 
emissions and clean energy stock performance. These findings are corroborated by Dutta (2017) and 
Dutta et al. (2018), who concluded that carbon emission allowance prices do not exert a consistent 
effect on renewable energy stock prices. 

However, Dutta et al. (2018), employing a VAR-GARCH model, emphasized that while there is no 
general impact of European carbon allowance prices on renewable energy stocks, there exists a 
volatility spillover effect, which varies across regions. Building on this, Hanif et al. (2021) extended 
the analysis using time-domain and time-frequency spillover methods, showing that short-term 
volatility spillovers were more dominant than long-term ones. Additionally, a dynamic copula 
analysis indicated a positive dependence between carbon emission prices and clean energy stock 
returns. 

3.  METODOLOGY AND DATA 

3.1. RALS ADF 

The Residual Augmented Least Squares - Augmented Dickey-Fuller (RALS-ADF) unit root test 
introduced by Im et al. (2014) represents a significant methodological advancement by utilizing 
higher-order moment information from non-normal error distributions, which are often neglected in 
traditional unit root testing frameworks. Unlike existing approaches that require specific 
distributional assumptions or complex non-linear estimation techniques, the RALS methodology 
achieves power gains through a computationally simple, two-step least squares procedure. This 
makes it particularly valuable in empirical applications involving financial or macroeconomic time 
series, where non-normality and structural complexities are common. 

The RALS-ADF unit root test begins with the estimation of standard ADF regressions, both with a 
constant (Equation 1) and with a constant & trend (Equation 2), using ordinary least squares (OLS). 
From these estimations, residual series are obtained: 
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∆𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + ∑ 𝜙𝑖∆𝑦𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1     (1) 

∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝜃𝑦𝑡−1 + ∑ 𝜙𝑖∆𝑦𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1        (2) 

In the second stage of the procedure, the non-normality of the residuals is explicitly accounted for. 
The second and third moments of the residuals, denoted as 𝑠2 = 𝑇−1(∑ 𝜀�̂�

2)𝑇
𝑡=1  and 𝑠3 =

𝑇−1(∑ 𝜀�̂�
3)𝑇

𝑡=1   are computed. Using these, two new variables are constructed to capture the 
deviation from normality: 

�̂�2𝑡 = 𝜀�̂�
2 − 𝑠2        (3) 

�̂�3𝑡 = 𝜀�̂�
3 − 𝑠3 − 3𝑠2𝜀�̂�  (4) 

These transformed residual terms are then incorporated into the original ADF equations, resulting in 
the modified RALS-ADF regression models: 

∆𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + ∑ 𝜙𝑖∆𝑦𝑡−𝑖 + 𝜆2�̂�2𝑡 + 𝜆3�̂�3𝑡 + 𝑢𝑡
𝑝
𝑖=1   (5) 

∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝜃𝑦𝑡−1 + ∑ 𝜙𝑖∆𝑦𝑡−𝑖 + 𝜆2�̂�2𝑡 + 𝜆3�̂�3𝑡 + 𝑢𝑡
𝑝
𝑖=1   (6) 

In this extended formulation, 𝜆2 and 𝜆3 measure the contribution of the second and third moment 

deviations. The test statistic will be 𝜏∗ = 𝜌𝜏𝐴𝐷𝐹 + √1 − 𝜌2𝑍 where 𝜌2is estimated as �̂�2 = �̂�𝑢
2 �̂�𝜀

2⁄ . 

3.2. RALS Cointegration 

The two-step cointegration test introduced by Engle and Granger (1987) is widely used in the 
literature due to its simplicity. In the first step, a regression is estimated using the OLS method 
between two series that are integrated at the same order (Yılancı and Aydın, 2018). 

𝑦𝑡 = 𝛿𝑥𝑡 + 𝑢𝑡  (7) 

In the second step, the stationarity of the residuals �̂�𝑡 obtained from Equation (7) is tested using an 
ADF-type regression: 

∆�̂�𝑡 = 𝛳0 + 𝛿�̂�𝑡−1 + ∑ 𝛳𝑖∆�̂�𝑡−𝑖 +𝑘
𝑖=1 𝑣𝑡  (8) 

To account for non-normality in the error term 𝑣𝑡, we follow the RALS approach. For this purpose, 
the higher moments of the residuals are used to construct additional variables: 

�̂�𝑡 = ℎ(𝑣𝑡) − �̂� − 𝑣𝑡�̂�𝑡,                   𝑡 = 1, 2, . . , 𝑇  (9) 

where ℎ(𝑣𝑡) = (𝑣𝑡
2, 𝑣𝑡

3)′, �̂� = 𝑇−1 ∑ ℎ(𝑣𝑡)𝑇
𝑡=1  and, �̂�𝑡 = 𝑇−1 ∑ ℎ′(�̂�𝑡)𝑇

𝑡=1  

�̂�𝑡 = (𝑣𝑡
2 − 𝑚2, 𝑣𝑡

3 − 𝑚3 − 3𝑚2𝑣𝑡)′  (10) 

where 𝑚𝑗 =
1

𝑇
∑ 𝑣𝑡

𝑗𝑇
𝑡=1 . The initial component of  �̂�𝑡 is derived from the moment restriction 

𝐸(𝑣𝑡
2 − 𝜎𝑡

2) = 0 for orders 𝑗 =  2, 3,  which holds under the assumption of homoskedasticity. 
Provided that the error terms exhibit asymmetry, this moment condition contributes to efficiency 
improvements. The second component of  �̂�𝑡 stems from the redundancy restriction 𝜇4 = 3𝜎4, 

where 𝜇𝑗 = 𝐸(𝑣𝑡
𝑗
), a condition that exclusively holds under normality. For all non-normal 

distributions, the condition generates a significant stationary term, which, when incorporated into 
the cointegration regression, improves test performance. Thus, RALS cointegration regressions are 
formulated by augmenting the standard specification with  �̂�𝑡. 

∆�̂�𝑡 = 𝛳0 + 𝛿�̂�𝑡−1 + ∑ 𝛳𝑖∆�̂�𝑡−𝑖 +𝑘
𝑖=1 �̂�𝑡

′𝛾 + 𝑒𝑡  (11) 

The null hypothesis of no long-run relationship (𝛿 = 0) can be tested using the standard t-statistic. 

𝑡∗ → 𝑝. 𝑡 + √1 − 𝑝2. 𝑍  (12) 

where 𝑍 is a standard normal random variable and 𝑝 is the long-run correlation between 𝑣𝑡 in 
Equation (8) and 𝑒𝑡 in Equation (11). 
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The findings indicate that the asymptotic distributions of the RALS cointegration tests are influenced 
by the nuisance parameter 𝑝2. However, as noted by Lee et al. (2015), this parameter can be 
computed using the nonparametric estimation techniques proposed by Hansen et al. (1995). 

3.3. Data 

This study employs a comprehensive dataset spanning from February 9, 2016, to March 31, 2025, 
obtained from the Datastream database. The variables analyzed include the STX Global Low Carbon 
Footprint Index (STOXXLCF), the European Union Allowance (EUA) prices from the EEX market the 
STOXX 600 Technology sector index (STOXX600T), and West Texas Intermediate crude oil prices 
(WTI). The purpose of the analysis is to investigate the influence of EUA prices, technology sector 
performance, and oil prices on the low carbon footprint stock price index, modeled as: 

𝑆𝑇𝑂𝑋𝑋𝐿𝐶𝐹𝑡 = 𝑓(𝐸𝑈𝐴𝑡 , 𝑆𝑇𝑂𝑋𝑋600𝑇𝑡, 𝑊𝑇𝐼𝑡)  (13) 

where 𝑆𝑇𝑂𝑋𝑋𝐿𝐶𝐹𝑡 is the low carbon footprint stock price index; 𝐸𝑈𝐴𝑡 represents EUA prices; 
𝑆𝑇𝑂𝑋𝑋600𝑇𝑡 is the technology sector index, and 𝑊𝑇𝐼𝑡 the oil price. The coefficients 𝛽1, 𝛽2, and 𝛽3 
capture the effects of the independent variables, while  𝛽0 denotes the intercept and 𝜀𝑡 the error 
term. 

𝑆𝑇𝑂𝑋𝑋𝐿𝐶𝐹𝑡 = 𝛽0 + 𝛽1𝐸𝑈𝐴𝑡 + 𝛽2𝑆𝑇𝑂𝑋𝑋600𝑇𝑡 + 𝛽3𝑊𝑇𝐼𝑡 + 𝜀𝑡  (14) 

Figure 1 illustrates the evolution of daily prices (left panels) and daily first differences (right panels) 
for the STOXXLCF, EUA, STOXX600T, and WTI indices over the period from 2016 to 2025. As 
depicted in the left-hand panels, the price series for all four indices generally exhibit a notable 
upward trend from 2016 through approximately 2022. In particular, the technology sector and 
carbon allowance markets demonstrated strong growth during this period. Following a peak in 
2022, the price paths of these indices exhibit either a modest decline through 2024, albeit at 
relatively high levels. The WTI crude oil index, in contrast, shows more pronounced fluctuations and 
a sideways movement throughout the same period, reflecting a more volatile pattern relative to the 
other indices. The right-hand panels of Figure 1 display the daily first differences calculated as the 
changes in daily prices fluctuating around zero. These first difference series show periods of 
increased volatility, with notable positive and negative changes, especially around early 2020 at the 
start of the COVID-19 pandemic and in 2022, likely due to geopolitical and economic shocks. These 
pronounced fluctuations indicate significant market reactions to external shocks, underlining the 
dynamic and volatile nature of these asset classes. 

Figure 1: Daily Prices and Differences of Selected Indices 
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As shown in Table 1, the descriptive statistics indicate that the STOXXLCF index exhibits the highest 
average price level and volatility among the series. All indices display positive skewness, suggesting a 
tendency toward more frequent extreme positive price movements. While the kurtosis values 
generally approximate or fall below those of a normal distribution, the Jarque-Bera (J-B) tests reject 
the normality assumption for all series, implying deviations from normal distribution in the price 
dynamics. 

Table 1: Descriptive Statistics 

 
STOXXLCF STOXX600T EUA WTI 

Mean 307.61 136.06 39.67 56.93 

Maximum 503.306 349.97 97.58 107.93 

Minimum 165.586 48.02 3.91 20.92 

Skewness 0.351 0.566 0.391 0.597 

Kurtosis 1.984 2.293 1.612 3.016 

Jarque-Bera 143.99*** 167.9*** 239.35*** 134.69*** 

Note: *** indicates significance at the 1% level 

4. EMPIRICAL RESULTS AND DISCUSSION 
Before conducting the cointegration analysis, it is essential to examine the time series properties of 
the variables. This section applies both the traditional ADF test and the more robust RALS-ADF test 
to determine the order of integration of the series. While the ADF test assumes normally distributed 
residuals, the RALS-ADF test accounts for non-normality and higher-order moments, providing more 
reliable inference when analyzing financial time series, which are often characterized by 
leptokurtosis and skewness. 

To assess the stationarity of the series, both tests were applied under constant and constant & trend 
model. As shown in Table 2, all level series fail to reject the null hypothesis of a unit root at the 5% 
significance level in both model, indicating that the variables are non-stationary in levels. This is 
further supported by extremely high J-B test statistics in the ADF test results, particularly for oil 
prices (J-B = 2,836,739), STOXXLCF (J-B = 21,263.4), and other variables, which reveal substantial 
deviations from normality.  

In contrast, both the ADF and RALS-ADF tests under the constant specification indicate that all first-
differenced series are stationary at the 1% significance level. For example, the RALS-ADF statistics 
for the differenced series are highly significant (e.g., -52.491 for 𝛥𝑆𝑇𝑂𝑋𝑋𝐿𝐶𝐹, -54.869 for 𝛥𝐸𝑈𝐴), 
confirming the I(1) nature of the variables. However, when applying the RALS-ADF test under the 
constant and trend model, the presence of unit roots persists, indicating possible limitations in 
detecting stationarity when trend components are included. Nevertheless, as illustrated in Figure 1, 
the trend components observed in the level series disappear after first differencing. Therefore, it is 
more appropriate to rely on the results of the constant model. 

Table 2: Unit Root Test Results 
 ADF RALS ADF 
 Constant Constant & trend Constant Constant & trend 
 Test Stat J-B Test Stat J-B Test Stat 𝜌2 Test Stat 𝜌2 

𝑆𝑇𝑂𝑋𝑋𝐿𝐶𝐹 -0.980 21263.4*** -3.385* 22654.9*** -1.217 0.919 4.391 0.909 
𝑆𝑇𝑂𝑋𝑋600𝑇 -1.794 2104.1*** -3.406* 2167.9*** -1.914 0.935 3.618 0.916 

𝐸𝑈𝐴 -1.466 1758.9*** -1.354 1658.7*** -1.132 0.931 0.047 0.932 
𝑊𝑇𝐼 -2.352 2836739.9*** -2.244 2841723.0*** -2.415 0.726 0.484 0.726 

∆𝑆𝑇𝑂𝑋𝑋𝐿𝐶𝐹 -52.787*** 21027.05*** -52.779*** 21040.6*** -52.491*** 0.919 -0.269 0.907 
∆𝑆𝑇𝑂𝑋𝑋600𝑇 -49.188*** 2080.6*** -49.187*** 2079.9*** -52.787*** 0.934 -0.514 0.935 

∆𝐸𝑈𝐴 -50.649*** 1756.0*** -50.664*** 1768.7*** -54.869*** 0.931 -1.084 0.931 
∆𝑊𝑇𝐼 -48.664*** 2792758*** -48.647*** 2796382*** -10.935*** 0.723 -0.768 0.723 

Note: *** and * indicates significance at the 1% and 10% level, respectively. 
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As shown in Table 3, the standard Engle-Granger (EG) cointegration test fails to provide sufficient 
evidence for a long-run relationship among the variables. Furthermore, the high J-B statistic (1419.9) 
indicates a strong deviation from normality in the residuals. This supports concerns raised in the 
literature about the sensitivity of the EG test to non-normal error distributions, particularly in 
financial time series, which often exhibit leptokurtosis and skewness. 

In contrast, the RALS version of the Engle-Granger test (RALS-EG) yields a statistically significant test 
statistic of -4.069, surpassing the critical value at the 1% level, thereby confirming the existence of a 
long-run cointegrating relationship. The improvement in inference under the RALS framework can 
be attributed to its ability to account for higher-order moment conditions and non-normal error 
structures, aligning with theoretical expectations and enhancing the robustness of the long-run 
analysis. 

Table 3: Cointegration Results 

EG RALS-EG 
Test Stat J-B Test Stat 𝜌2 

-2.974 1419.9*** -4.069*** 0.343 
Note: *** indicates significance at the 1% level. Critical values with constant are taken from Yılancı and Aydın (2018) for 
RALS-EG. 

As shown in Table 4, the long-run estimation results obtained through FMOLS, DOLS, and CCR 
methods consistently demonstrate that the STOXX 600 Technology index, carbon allowance index, 
and oil prices have statistically significant and positive effects on the STOXX Low Carbon Footprint 
index. Across all three estimation techniques, the coefficient of STOXX600T is consistently estimated 
at approximately 0.81, indicating a strong and stable positive association between the performance 
of the technology sector and low-carbon investments. Similarly, the EUA variable exhibits positive 
and highly significant coefficients, suggesting that rising carbon prices are conducive to increased 
investment in low-carbon assets, consistent with theoretical expectations regarding the incentivizing 
role of emissions pricing. The positive coefficients on oil prices across models imply that higher oil 
prices may enhance the appeal of low-carbon investments, potentially due to cost-driven 
substitution effects. The robustness and consistency of these findings across different estimators 
highlight the structural link between technology sector dynamics, energy markets, environmental 
pricing mechanisms, and the performance of low-carbon financial assets. 

Table 4: Long Run Estimation Results 

Variables FMOLS DOLS CCR 

𝑆𝑇𝑂𝑋𝑋600𝑇 
0.821  

(0.000) 
0.8130  
(0.000) 

0.8218  
(0.000) 

𝐸𝑈𝐴 
0.0441  
(0.000) 

0.0464  
(0.000) 

0.0441  
(0.000) 

𝑊𝑇𝐼 
0.0945  
(0.000) 

0.0950  
(0.000) 

0.0949  
(0.000) 

 

5. CONCLUSION 

This study investigates the long-run relationships among the STOXX Low Carbon Footprint Price 
Index, oil prices, carbon allowance prices under the EU Emissions Trading System (EU ETS), and the 
STOXX 600 Technology Index during the period from February 9, 2016, to March 31, 2025. Using the 
Residual Augmented Least Squares (RALS) cointegration methodology, which is robust to non-
normal distributions and higher-order moment conditions frequently observed in financial time 
series, the study identifies a statistically significant long-run cointegrating relationship that could not 
be detected using the traditional Engle-Granger test. 

The long-run estimations via FMOLS, DOLS, and CCR methods consistently demonstrate that 
technology sector performance, carbon allowance prices, and oil prices have positive and statistically 
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significant effects on low-carbon equity prices. In particular, the stable and strong coefficient of the 
STOXX Europe 600 Technology Index confirms the vital role of technological innovation in driving 
low-carbon investment, in line with prior studies emphasizing the R&D-intensive and innovation-
driven nature of the clean energy sector (Song et al., 2019; Çelik et al., 2022). The positive effect of 
carbon allowance prices is also consistent with market-based regulatory mechanisms as highlighted 
by Welfens and Celebi (2020) and Hanif et al. (2021), indicating that higher emissions prices 
incentivize cleaner investments and improve firm-level valuation through regulatory alignment. 
Moreover, the positive impact of oil prices suggests a demand-side substitution effect, where rising 
fossil fuel costs enhance the relative attractiveness of clean energy, supporting findings from Kumar 
et al. (2012) and Fazlollahi and Ebrahimijam (2017). 

These results confirm the hypotheses presented in the introduction, particularly the expected 
positive linkage between low-carbon investment performance and both environmental regulation 
and technology sector dynamics. Unlike some earlier studies that report limited or inconsistent 
relationships (Henriques and Sadorsky, 2008; Sadorsky, 2012), this study’s use of a more robust 
cointegration framework provides clearer evidence of structural long-run interactions among the 
variables. 

From a policy standpoint, the findings highlight the importance of maintaining a credible and stable 
carbon pricing regime, as well as supporting technology development through targeted innovation 
policies. Investors and portfolio managers should consider carbon markets and technology sector 
indicators when designing climate-aligned investment strategies. As clean energy transitions 
increasingly shape global financial markets, aligning regulatory tools with innovation-driven sectors 
can enhance both sustainability outcomes and financial resilience. 
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